Problem 1. Find all positive integers $n>2$ such that

$$
n!\mid \prod_{\substack{p<q \leq n, p, q \text { primes }}}(p+q) \text {. }
$$

Problem 2. In a particular form of solitaire, we start with n piles of pebbles (for some positive integer n), each initially containing a single pebble. A move consists of the following three operations: choosing two piles, taking an equal number of pebbles from each pile, and forming a new pile out of these pebbles.
For each positive integer n, find the smallest number of non-empty piles that one can obtain by performing a finite sequence of moves of this form.

Problem 3. Let $A A^{\prime} B C C^{\prime} B^{\prime}$ be a convex cyclic hexagon such that $A C$ is tangent to the incircle of triangle $A^{\prime} B^{\prime} C^{\prime}$, and $A^{\prime} C^{\prime}$ is tangent to the incircle of triangle $A B C$. Let the lines $A B$ and $A^{\prime} B^{\prime}$ meet at X, and let the lines $B C$ and $B^{\prime} C^{\prime}$ meet at Y.
Prove that if $X B Y B^{\prime}$ is a convex quadrilateral, then it has an incircle.

