Problem 1. Let m and n be positive integers greater than 1 . Consider an $m \times n$ grid with a coin lying tail-side up in each unit square of the grid. To perform a move, one must execute the following sequence of steps:

1. Select a 2×2 square S in the grid; then
2. Flip the coins in the top-left and bottom-right unit squares of S; then, finally
3. Flip the coin in either the top-right or bottom-left unit square of S.

Determine all pairs (m, n) for which it is possible that every coin shows head-side up after performing a finite number of moves.

Problem 2. Let $a_{1}<a_{2}<a_{3}<\cdots$ be positive integers such that a_{k+1} divides $2\left(a_{1}+a_{2}+\cdots+a_{k}\right)$ for every positive integer k. Suppose that for infinitely many primes p, there exists a positive integer k such that p divides a_{k}.
Prove that for every positive integer n, there exists a positive integer k such that n divides a_{k}.
Problem 3. Let $A B C$ be an acute-angled triangle with circumcircle ω. A circle Γ is internally tangent to ω at A and also tangent to $B C$ at D. Let $A B$ and $A C$ intersect Γ at P and Q respectively. Let M and N be points on line $B C$ such that B is the midpoint of $D M$ and C is the midpoint of $D N$. Lines $M P$ and $N Q$ meet at K and intersect Γ again at I and J respectively. The ray $K A$ meets the circumcircle of triangle $I J K$ at $X \neq K$.
Prove that $\angle B X P=\angle C X Q$.

