1. Find all the real solutions x of the equation

$$\sqrt{(x + 1972098 - 1986)/(x + 986049)} + \sqrt{(x + 1974085 - 1988)/(x + 986049)} = 1$$

where $\sqrt{}$ indicates the non-negative square root.

2. Find all the real-valued functions f defined on the set D of natural numbers $x \geq 10$ and satisfying the functional equation

$$f(x + y) = f(x)f(y)$$

for all $x, y \in D$.

3. Find a pair of integers r, s such that $0 < s < 200$ and

$$\frac{45}{61} \frac{s}{r} \frac{59}{80}.$$

Also prove that there is exactly one such pair r, s.

4. The triangle ABC has orthocentre H. The feet of the perpendiculars from H to the internal and external bisectors of angle BAC (which is not a right angle) are P and Q. Prove that PQ passes through the middle point of BC.

5. Numbers \(d(n, m) \) with \(m, n \) integers, \(0 \leq m \leq n \), are defined by

\[
d(n, 0) = d(n, n) = 1 \quad \text{all } n \geq 0
\]

and

\[
md(n, m) = md(n-1, m) + (2n - m) d(n-1, m-1)
\]

for \(0 < m < n \). Prove that all the \(d(n, m) \) are integers.

6. Show that the least positive value of

\[
\frac{x^2 + y^2}{y},
\]

where \(x, y \) are real numbers such that

\[
7x^2 + 3xy + 3y^2 = 1,
\]

is \(\frac{1}{2} \).

REMEMBER: A FRESH SHEET FOR EACH QUESTION WITH NAME AND QUESTION NUMBER ON EVERY SHEET