BRITISH MATHEMATICAL OLYMPIAD

Wednesday 16th January 1991

Time allowed – Three and a half hours

Instructions:
- Start each question on a fresh sheet of paper.
- Write on one side of the paper only.
- On every sheet of working write the number of the question in the top left hand corner and your name, initials and school in the top right hand corner.
- Complete the cover sheet provided and attach it to the front of your script, followed by the questions 1, 2, 3, 4, 5, 6, 7 in order.
- Staple all the pages neatly together in the top left hand corner.

1. Prove that the number
 \[3^n + 2 \times 17^n \]
 where \(n \) is a non-negative integer, is never a perfect square.
 [4 marks]

2. Find all positive integers \(k \) such that the polynomial \(x^{2k+1} + x + 1 \) is divisible by the polynomial \(x^k + x + 1 \).

 For each such \(k \) specify the integers \(n \) such that \(x^n + x + 1 \) is divisible by \(x^k + x + 1 \).
 [5 marks]

3. \(ABCD \) is a quadrilateral inscribed in a circle of radius \(r \). The diagonals \(AC \), \(BD \) meet at \(E \).

 Prove that if \(AC \) is perpendicular to \(BD \) then
 \[
 EA^2 + EB^2 + EC^2 + ED^2 = 4r^2.
 \]

 (*)

 Is it true that if (*) holds then \(AC \) is perpendicular to \(BD \)? Give a reason for your answer.
 [6 marks]

Turn over ...
4. Find, with proof, the minimum value of \((x + y)(y + z) \) where \(x, y, z \) are positive real numbers satisfying the condition
\[xyz(x + y + z) = 1. \] [7 marks]

5. Find the number of permutations (arrangements)
\[p_1, p_2, p_3, p_4, p_5, p_6 \]
of 1, 2, 3, 4, 5, 6 with the property:
For no integer \(n, 1 \leq n \leq 5 \), do \(p_1, p_2, \ldots, p_n \) form a permutation of 1, 2, \ldots, \(n \). [9 marks]

6. Show that if \(x \) and \(y \) are positive integers such that \(x^2 + y^2 - x \) is divisible by 2xy then \(x \) is a perfect square. [9 marks]

7. A ladder of length \(l \) rests against a vertical wall. Suppose that there is a rung on the ladder which has the same distance \(d \) from both the wall and the (horizontal) ground. Find explicitly, in terms of \(l \) and \(d \), the height \(h \) from the ground that the ladder reaches up the wall. [10 marks]