1. Consider the pair of four-digit positive integers
\((M, N) = (3600, 2500) \).
Notice that \(M \) and \(N \) are both perfect squares, with equal
digits in two places, and differing digits in the remaining
two places. Moreover, when the digits differ, the digit in \(M \)
is exactly one greater than the corresponding digit in \(N \).
Find all pairs of four-digit positive integers \((M, N)\) with these
properties.

2. A function \(f \) is defined over the set of all positive integers and
satisfies
\[
f(1) = 1996 \quad \text{and} \quad f(1) + f(2) + \cdots + f(n) = n^2 f(n) \quad \text{for all } n > 1.
\]
Calculate the exact value of \(f(1996) \).

3. Let \(\triangle ABC \) be an acute-angled triangle, and let \(O \) be its
circumcentre. The circle through \(A, O \) and \(B \) is called \(S \).
The lines \(CA \) and \(CB \) meet the circle \(S \) again at
\(P \) and \(Q \) respectively. Prove that the lines
\(CO \) and \(PQ \) are
perpendicular.

4. For any real number \(x \), let \([x]\) denote the greatest integer
which is less than or equal to \(x \). Define
\[
q(n) = \left\lfloor \frac{n}{\sqrt{n}} \right\rfloor \quad \text{for} \quad n = 1, 2, 3, \ldots
\]
Determine all positive integers \(n \) for which \(q(n) > q(n + 1) \).

5. Let \(a, b \) and \(c \) be positive real numbers.
(i) Prove that \(4(a^3 + b^3) \geq (a + b)^3 \).
(ii) Prove that \(9(a^3 + b^3 + c^3) \geq (a + b + c)^3 \).