
BRITISH MATHEMATICAL OLYMPIAD

Round 1 : Wednesday, 13 January 1999

Time allowed Three and a half hours.

Instructions • Full written solutions - not just answers - are

required, with complete proofs of any assertions

you may make. Marks awarded will depend on the

clarity of your mathematical presentation. Work

in rough first, and then draft your final version

carefully before writing up your best attempt.

Do not hand in rough work.

• One complete solution will gain far more credit

than several unfinished attempts. It is more

important to complete a small number of questions

than to try all five problems.

• Each question carries 10 marks.

• The use of rulers and compasses is allowed, but

calculators and protractors are forbidden.

• Start each question on a fresh sheet of paper. Write

on one side of the paper only. On each sheet of

working write the number of the question in the

top left hand corner and your name, initials and

school in the top right hand corner.

• Complete the cover sheet provided and attach it to

the front of your script, followed by the questions

1,2,3,4,5 in order.

• Staple all the pages neatly together in the top left
hand corner.

Do not turn over until told to do so.
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1. I have four children. The age in years of each child is a
positive integer between 2 and 16 inclusive and all four ages
are distinct. A year ago the square of the age of the oldest
child was equal to the sum of the squares of the ages of the
other three. In one year’s time the sum of the squares of the
ages of the oldest and the youngest will be equal to the sum
of the squares of the other two children.
Decide whether this information is sufficient to determine their
ages uniquely, and find all possibilities for their ages.

2. A circle has diameter AB and X is a fixed point of AB lying
between A and B. A point P , distinct from A and B, lies
on the circumference of the circle. Prove that, for all possible
positions of P ,

tan 6 APX

tan 6 PAX
remains constant.

3. Determine a positive constant c such that the equation

xy2
− y2

− x + y = c

has precisely three solutions (x, y) in positive integers.

4. Any positive integer m can be written uniquely in base 3 form
as a string of 0’s, 1’s and 2’s (not beginning with a zero). For
example,

98 = (1×81) + (0×27) + (1×9) + (2×3) + (2×1) = (10122)3.

Let c(m) denote the sum of the cubes of the digits of the base
3 form of m; thus, for instance

c(98) = 13 + 03 + 13 + 23 + 23 = 18.

Let n be any fixed positive integer. Define the sequence (ur)
by

u1 = n and ur = c(ur−1) for r ≥ 2.

Show that there is a positive integer r for which ur = 1, 2
or 17.

5. Consider all functions f from the positive integers to the
positive integers such that
(i) for each positive integer m, there is a unique positive

integer n such that f(n) = m;
(ii) for each positive integer n, we have

f(n + 1) is either 4f(n) − 1 or f(n) − 1.
Find the set of positive integers p such that f(1999) = p for
some function f with properties (i) and (ii).


