1. Find all two-digit integers \(N \) for which the sum of the digits of \(10^N - N \) is divisible by 170.

2. Circle \(S \) lies inside circle \(T \) and touches it at \(A \). From a point \(P \) (distinct from \(A \)) on \(T \), chords \(PQ \) and \(PR \) of \(T \) are drawn touching \(S \) at \(X \) and \(Y \) respectively. Show that \(\angle QAR = 2 \angle XAY \).

3. A tetromino is a figure made up of four unit squares connected by common edges.
 (i) If we do not distinguish between the possible rotations of a tetromino within its plane, prove that there are seven distinct tetrominoes.
 (ii) Prove or disprove the statement: It is possible to pack all seven distinct tetrominoes into a \(4 \times 7 \) rectangle without overlapping.

4. Define the sequence \((a_n) \) by
 \[a_n = n + \{ \sqrt{n} \}, \]
 where \(n \) is a positive integer and \(\{ x \} \) denotes the nearest integer to \(x \), where halves are rounded up if necessary. Determine the smallest integer \(k \) for which the terms \(a_k, a_{k+1}, \ldots, a_{k+2000} \) form a sequence of 2001 consecutive integers.

5. A triangle has sides of length \(a, b, c \) and its circumcircle has radius \(R \). Prove that the triangle is right-angled if and only if \(a^2 + b^2 + c^2 = 8R^2 \).