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General comments
Both candidates and their teachers will find it helpful to know something of the general
principles involved in marking Olympiad-type papers. These preliminary paragraphs therefore
serve as an exposition of the ‘philosophy’ which has guided both the setting and marking of all
such papers at all age levels, both nationally and internationally.

What we are looking for are full solutions to problems. This involves identifying a suitable
strategy, explaining why your strategy solves the problem, and then carrying it out to produce
an answer or prove the required result. In marking each question, we look at the solution
synoptically and decide whether the candidate has a viable overall strategy or not. An answer
which is essentially a solution will be awarded near maximum credit, with marks deducted for
errors of calculation, flaws in logic, omission of cases or technical faults. On the other hand,
an answer which does not present a complete argument is marked on a ‘0 plus’ basis; up to 4
marks might be awarded for particular cases or insights. This means that many Olympiad mark
schemes are such that a score of 5 out of 10 cannot be awarded. In general the logical structure
of the mark scheme aims to reflect the logical structure of the problem while rewarding correct
arguments more generously than correct calculations.

This approach is therefore rather different from what happens in public examinations such
as GCSE, AS and A level, where credit is often given for the ability to carry out individual
techniques regardless of how these techniques fit into a protracted argument. It is therefore
vital that candidates taking Olympiad papers realise the importance of trying to finish whole
questions rather than attempting lots of disconnected parts.
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General comments
The problems on the first half of this year’s paper were a little more demanding than in 2023,
leading to slightly lower average scores. However, it was still encouraging to see the vast
majority of candidates making good progress on at least one problem. A fairly approachable
geometry problem gave the strongest candidates time to engage with the final two problems,
and an impressive number solved problem 5. Problem 6 proved hard enough to ensure that
almost all candidates had something to think about throughout the exam.

Most candidates made a concerted effort to explain their reasoning and the effort put into writing
up was appreciated by markers. It is worth noting that adding more mathematical notation
does not always render an argument clearer. This was particularly apparent in problem 1. The
easiest way to show that the relevant six numbers were happy was simply to write out the
requisite circles of numbers. Many candidates who introduced algebra and tried to give more
general constructions ended up losing marks by not explaining fully why the numbers in their
constructions were, for example, all different.

Problem 3 (as well as problem 1) provided the annual reminder of the importance of trying
small examples. Candidates who considered what happens when the game is played starting
with 2, then 3, then 4 and so on generally spotted the importance of parity and many went on to
solve the problem. Those who dived in with an initial value of one million often missed the
point and ended up attempting a delicate case analysis. This proved to be a much more difficult
approach.

The 2024 British Mathematical Olympiad Round 1 attracted 1828 entries. The scripts were
marked in London (with some remote markers) from the 6th to the 8th of December by a team
of: Hugh Ainsley, Margaret Anthony, Eszter Backhausz*, Naomi Bazlov*, Sam Bealing*,
Jonathan Beckett, Jamie Bell*, Robin Bhattacharyya, Tom Bowler*, Kaimyn Chapman, Raka
Chattopadhyay, Andrea Chlebikova*, Volodymyr Chub, James Cranch, Juliette Culver, Stephen
Darby, David Dyer , Paul Fannon, Chris Garton, Anthony Goncharov*, Amit Goyal, Aditya
Gupta, Peter Hall, Ben Handley*, Stuart Haring*, Jon Hart, Alexander Hurst, Ian Jackson,
Shavindra Jayasekera, Vesna Kadelburg, Thomas Kavanagh*, Patricia King, Isaac King, Jeremy
King*, Hayden Lam, Sida Li, Elsa Lin, Thomas Lowe, Owen Mackenzie, Sam Maltby, Harry
Metrebian, Kian Moshiri, Oliver Murray, Joseph Myers, Daniel Naylor, Huyen Ngoc Pham,
Preeyan Parmar, Peter Price, Dominic Rowland, Heerpal Sahota, Geoff Smith*, Samuel Sturge,
Rob Summerson, Stephen Tate, William Thomson, Tommy Walker Mackay*, Zi Wang, William
Wu, Helen Xiaohui Chen, Lingde Yang, Dominic Yeo, Li Zhang, Haolin Zhao. (An asterisk
shows that the marker was a problem captain.)

The problems were proposed by Geoff Smith, Geoff Smith, Sam Bealing, Dominic Yeo, Sam
Cappleman-Lynes, and Jeremy King, respectively.

In addition to the written solutions in this report, video solutions can be found https://
bmos.ukmt.org.uk/solutions/bmo1-2025/ and (with curated subtitles) at https://ukmt.org.uk/
video-solutions-list
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Mark distribution
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The mean score was 17.8 and the median score was 16.

The thresholds for qualification for BMO2 were as follows:

Year 13: 43 marks or more.

Year 12: 40 marks or more.

Year 11 or below: 38 marks or more.

The thresholds for medals, Distinction and Merit were as follows:

Medal and book prize: 43 marks or more.

Distinction: 26 marks or more.

Merit: 10 marks or more.
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Question 1

We say that the positive integer 𝑛 ≥ 3 is happy if it is possible to arrange 𝑛 different positive
integers in a circle such that two conditions are satisfied:
(a) If integers 𝑢 and 𝑣 in the circle are neighbours, then either 𝑢 divides 𝑣 or 𝑣 divides 𝑢;
(b) If different integers 𝑢 and 𝑣 are in the circle but are not neighbours, then neither divides

the other.
Determine, with proof, which positive integers 𝑛 in the range 3 ≤ 𝑛 ≤ 12 are happy.

Solution

The case 𝑛 = 3 is unusual because every number is adjacent to every other, so condition (b)
does not need to be considered. The diagram below shows one of many possible constructions
showing 3 is happy.

For even values of 𝑛 > 4 we can show that 𝑛 is happy by placing distinct primes in alternate
spaces and placing the products of neighbouring primes between them as in the examples
below. Checking that both conditions in the question are satisfied is straightforward. For 𝑛 = 4
this construction does not work since if we use primes 𝑝1 and 𝑝2 both of the other numbers
would equal 𝑝1𝑝2 which is forbidden. This can be adapted by multiplying these two composite
numbers by two different numbers neither of which divides the other, for example we can use
𝑝2

1𝑝2 and 𝑝1𝑝
2
2 as shown below.

2
1

4

𝑛 = 3

3

6

210

5

15

𝑛 = 6

15
3

6
214

7

35
5

𝑛 = 8

5
15

3

6
222

11

77

7
35

𝑛 = 10

35
5

15

3

6
226

13

143

11

77
7

𝑛 = 12

3

122

18

𝑛 = 4

For the remaining cases, suppose that 𝑎, 𝑏 and 𝑐 are consecutive numbers round the circle. If
𝑎 < 𝑏 < 𝑐 then it must be the case that 𝑎 divides 𝑏 and that 𝑏 divides 𝑐, but this would imply
that 𝑎 divides 𝑐 which is impossible as 𝑎 and 𝑐 are not neighbours. Similarly 𝑎 > 𝑏 > 𝑐 would
imply 𝑐 divides 𝑎 which is impossible. Thus if we place < and > signs between the numbers in
the circle, they must alternate. However it is impossible for a odd number of these symbols to
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alternate round a circle. Thus if 𝑛 > 3 is odd, 𝑛 is not happy. So the required happy numbers
are 3, 4, 6, 8, 10 and 12.

Remark

Solutions for the even 𝑛 where 𝑛 = 4 is not a special case can also be constructed; for example,
place distinct primes in alternate spaces, and between them place products of neighbouring
primes multiplied by yet another new prime. This gives 2, 30, 3, 42 for the 𝑛 = 4 case.

Remark

The question could easily have been phrased without the slightly unusual restriction to the
numbers 3–12. This restriction was added to make it possible for candidates to solve the cases
one at a time, and to emphasise the value of working through small cases systematically.

Markers’ comments

Like many other Olympiad problems, there were two necessary ideas to prove: that certain
numbers are happy (with a construction), and that the remaining numbers are not happy (with a
proof that no construction is possible). Many candidates missed one of these points. Some
proved that odds (other than 3) cannot be happy, and commented that the remaining numbers
are therefore happy, implicitly using the erroneous reasoning that anything not yet proven
unhappy must be happy. Others gave constructions for the happy numbers, usually involving
primes, and then said that since this construction doesn’t work for the remaining odds that they
are therefore not happy. This is also erroneous, as other constructions might be possible.

The two special cases, of 𝑛 = 3 and 𝑛 = 4, also tripped up many candidates. This should
be further evidence as to why we cannot use “my construction doesn’t work for 𝑛 = 4” as a
proof that 4 is unhappy: in this case there is a slightly different construction that does work.
Candidates who missed one or both of these cases could still score highly but not full marks.

Some common mistakes that candidates made included not checking their numerical answers,
and overcomplicating the situation by introducing many variables. It can often be useful to
consider specific numbers for small cases in mathematical questions rather than trying to be
too general too soon.
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Question 2

A magician performs a trick with a deck of 𝑛 cards that are numbered from 1 to 𝑛. The
magician prepares for the trick by putting the cards in an order of her choosing. Then
she challenges a member of the audience to write an integer on a board. The magician
turns over the cards one by one, in their pre-arranged order. Every time the magician turns
over a card, the audience member multiplies the number on the board by −1, adds it to
the number on the card, writes the result on the board, and erases the old number. The
magician guarantees that, no matter which initial integer is chosen, the initial and final
numbers will sum to 0.
Determine for which natural numbers 𝑛 the magician can perform the trick. You must both
prove that the trick is possible for the numbers you claim, and prove that it is not possible
for any other numbers.

Solution

Suppose that the number written on the board at the start is 𝑥 and that the magician turns over
numbers 𝑎1, 𝑎2, . . . , 𝑎𝑛 in that order. The sequence of numbers written on the board will be:

𝑥
𝑎1 − 𝑥
𝑎2 − (𝑎1 − 𝑥) = 𝑎2 − 𝑎1 + 𝑥
𝑎3 − (𝑎2 − 𝑎1 + 𝑥) = 𝑎3 − 𝑎2 + 𝑎1 − 𝑥
. . .
𝑎𝑛 − 𝑎𝑛−1 + 𝑎𝑛−2 − · · · + (−1)𝑛𝑥
When 𝑥 is added to this final number the result must be zero. Since 𝑥 can be any integer
(including, for example, a very large one) it must be the case that (−1)𝑛𝑥 + 𝑥 = 0. Thus 𝑛 is odd.

We also need 𝑎𝑛 + 𝑎𝑛−2 + 𝑎𝑛−4 + · · · = 𝑎𝑛−1 + 𝑎𝑛−3 + 𝑎𝑛−5 + . . . . So the trick can be performed
if and only if 𝑛 is odd and it is possible to divide the numbers 1, 2, . . . , 𝑛 into two sets, of size
𝑛−1

2 and 𝑛+1
2 respectively, each of which has the same sum.

This common sum must be 1
2 (1 + 2 + · · · + 𝑛) = 𝑛(𝑛+1)

4 . Since 𝑛 is odd, this sum is only an
integer if 𝑛 + 1 is divisible by 4. So the trick cannot be performed unless 𝑛 = 4𝑘 + 3 for some
integer 𝑘 .

We now show that if 𝑛 = 4𝑘 + 3, then the trick can indeed be performed.

For 𝑛 = 3 arranging the cards in the order 1, 3, 2 makes the final number 2 − 3 + 1 − 𝑥 = −𝑥 as
required.

For 𝑛 = 7 the order 1, 3, 2, 4, 5, 7, 6 makes the final number (6−7+5−4) + (2−3+1−𝑥) = −𝑥.

In general if the trick can be made to work for some value of 𝑛, say 𝑛 = 𝑚, it can also be made
to work for 𝑛 = 𝑚 + 4. We simply add 𝑚 + 1, 𝑚 + 2, 𝑚 + 4, 𝑚 + 3 to the deck in that order. This
will change the final number of the board by ((𝑚 + 3) − (𝑚 + 4) + (𝑚 + 2) − (𝑚 + 1)) = 0.

Thus the trick can be performed for all 𝑛 = 4𝑘 + 3 (by induction).
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Markers’ comments

There were many scripts which struggled to give a very clear reason why 𝑛 must be odd for
the trick to be possible, but the markers were generous on this point. There were several
scripts where the case 𝑛 even was eliminated, but then the possibility of 𝑛 even continued to be
analyzed in the rest of the argument!

A common gap was to state that: for odd 𝑛, if 1 + 2 + · · · + 𝑛 is even (or if 𝑛 = 4𝑘 + 3), then the
trick can be performed. This step is not obvious and requires justification.

If 1+2+ · · · +𝑛 is odd, then there is a short argument to show that the trick cannot be performed,
but when is this sum odd? The key case is when 𝑛 = 4𝑘 + 1 for some integer 𝑘 . We did not
accept “so 1 + 2 + · · · + 𝑛 is odd” because that could be pattern spotting (i.e. bluff). We required
some sort of justification; this could be via the formula 𝑛(𝑛 + 1)/2 or by pointing out that
there are an odd number of odd numbers in the range 1, 2, . . . , 𝑛, ideally with a little more
explanation (for example by induction on 𝑘 or by pairing off 2𝑖 + 1 and 𝑛 − 2𝑖 for 0 ≤ 𝑖 < 𝑘
with the extra term 2𝑘 + 1). The markers accepted almost any evidence that the result was not
pattern spotted.
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Question 3

Rhian and Jack are playing a game in which initially the number 106 is written on a
blackboard. If the current number on the board is 𝑛, a move consists of choosing two
different positive integers 𝑎, 𝑏 such that 𝑛 = 𝑎𝑏 and replacing 𝑛 with |𝑎 − 𝑏 |. Rhian starts,
then the players make moves alternately. A player loses if they are unable to move.
Determine, with proof, which player has a winning strategy.

Solution

Rhian starts with 1 000 000 on the board, which is even an even number, so she has a winning
strategy. She just needs to guarantee that she writes an odd number, which is always possible
when she has an even on the board: 𝑛 = 𝑛×1 and if 𝑛 is even then |𝑛−1| is odd. Jack, receiving
an odd number, can only factorise it as a product of two odd numbers, as odd numbers do not
have even factors. But the difference of two odd numbers is always even, so he must always
write down an even number for Rhian.
Rhian can continue giving Jack odd numbers until she is finally able to give him 1, at which
point she wins. It is important to note that 1 will indeed always be reached eventually, as if
𝑎𝑏 = 𝑛 then 1 ≤ 𝑎, 𝑏 ≤ 𝑛 so |𝑎 − 𝑏 | < 𝑛 and so the value on the board decreases each move.

Alternative

1,000,000

975

974

322 190

62 50 14

973

9

29 5

972

132

8

28 4

7

3

2

1

6

Although it is difficult to do without the use of a computer, one might find specific numbers
Rhian can pick that limit Jack’s options, so it is possible to describe numerical strategies. The
fastest such solution is represented on the tree above: the blue numbers are the choices Rhian
should make and the pink ones list all the possible choices Jack has.
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Markers’ comments

Most successful candidates noticed that the game will always end on 1 as any other number
𝑛 has at least two factors, 1 and 𝑛. Thus, working backwards from the end of the game, they
observed that receiving 1 is a losing situation, 2 is winning because one can write 1, but then
receiving 3 is also a losing position because one can only go to 2. Looking at a few more
cases, they formed a conjecture that receiving an even number is a winning position whereas
receiving an odd is losing.

To prove this, they had to include three parts in their solution: they had to show that even
numbers can always be followed by an odd, that odd numbers must be followed by even, and
that the numbers are decreasing so the game will end. Many candidates forgot to include the
last part and received a small penalty for this omission.

Only a handful of students attempting a top-down solution, such as the alternative solution
above, were successful in scoring more than one or two marks. That is because in order for
such a solution to work, they had to list all possible ways Jack can react to Rhian’s moves.
Theoretically, it would be sufficient for Jack to have one good number to win, so even leaving
out one possible option makes the solution incomplete.
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Question 4

In the acute-angled triangle 𝐴𝐵𝐶 we have 𝐴𝐵 < 𝐴𝐶 < 𝐵𝐶. The midpoint of 𝐵𝐶 is 𝑀.
There is a point 𝑃 on the line segment 𝐴𝑀 such that 𝐴𝐵 = 𝐶𝑃, and ∠𝑃𝐴𝐵 = ∠𝐵𝐶𝑃.
Prove that ∠𝐶𝑃𝐵 = 90◦.

Solution

Most (non-trigonometric) solutions follow the following structure:

Step 1: Introduce a new point which helps you use the given conditions.
Step 2: Use the new point and the given conditions to find some equal angles.
Step 3: Use the equal angles to conclude that 𝑀𝐵 or 𝑀𝐶 is equal to 𝑀𝑃.
Step 4: Conclude that 𝑀 is the centre of the circumcircle of 𝐶𝑃𝐵, and so by angle in a

semicircle, find that ∠𝐶𝑃𝐵 = 90°.

There are many variations within this broad structure. The one below was among the most
common.

!

" #

$

%

&

Step 1: Reflect 𝑃 in the point 𝑀 to get the point 𝑄.
Step 2: Now the diagonals of 𝐵𝑄𝐶𝑃 bisect each other so it is a parallelogram.

We have 𝑃𝐶 = 𝐵𝑄 = 𝐴𝐵, so 𝐴𝐵𝑄 is isosceles and ∠𝑄𝐴𝐵 = 𝐵𝑄𝐴.
Since 𝐵𝑄𝐶𝑃 is a parallelogram, 𝑃𝐶 is parallel to 𝐵𝑄.
This means ∠𝐵𝑄𝑃 = ∠𝐶𝑃𝑄 = ∠𝑀𝐶𝑃.

Step 3: Now △𝑀𝐶𝑃 is isosceles, and we see that 𝑀𝐵 = 𝑀𝑃 = 𝑀𝐶.
Step 4: This yields that 𝑀 is the centre of the circle 𝐶𝑃𝐵 with diameter 𝐵𝐶 and ∠𝐶𝑃𝐵 = 90°

since the angle in a semicircle is a right angle.

Remark

The fact that if the diagonals of a quadrilateral bisect each other, then the quadrilateral is a
parallelogram is well known. As such it can be quoted without proof in BMO1 if it is clearly
stated. It is not to hard to prove since the diagonals split such a quadrilateral into pairs of
triangles which are congruent by SAS.
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Alternative
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We use the Sine Rule on △𝑀𝐴𝐵 and △𝑃𝑀𝐶 to get the following equalities:

𝐵𝑀

sin ∠𝑀𝐴𝐵
=

𝐴𝐵

sin ∠𝐵𝑀𝐴
=

𝑃𝐶

sin ∠𝑃𝑀𝐶
=

𝑃𝑀

sin ∠𝑀𝐶𝑃

The first equality come from △𝑀𝐴𝐵, the last from △𝑃𝑀𝐶, the middle equality comes 𝐴𝐵 = 𝑃𝐶
and ∠𝐵𝑀𝐴 + ∠𝑃𝑀𝐶 = 180◦.
Now ∠𝑀𝐴𝐵 = ∠𝑀𝐶𝑃, so 𝐵𝑀 = 𝑃𝑀. So again, 𝑀 is the centre of the the circumcircle of
𝐶𝑃𝐵 with diameter 𝐵𝐶 and ∠𝐶𝑃𝐵 = 90◦ from angle in a semicircle.

Alternative

There are a large number of possible ways to start this problem. Below is a list of some possible
first steps which can be made to work. We hope some readers of this report will enjoy filling in
the details for some of these.

• Define the point 𝑇 on the line 𝐴𝑀 (extended beyond 𝑀) such that 𝐴𝑇 = 𝐵𝐶.

• Construct 𝑋 outside 𝐴𝐵𝐶 such that the triangles 𝑋𝐴𝐵 and 𝐶𝑀𝑃 are congruent.

• Construct 𝐷 between 𝑀 and 𝐶 such that 𝐷𝐶 = 𝐴𝑃.

• Define 𝑌 to be the reflection of 𝐴 in point 𝑀 .

• Define 𝑍 be the intersection of lines 𝐴𝐵 and 𝑃𝐶.

• Define 𝑊 to be the intersection of the line 𝐴𝑀 (extended) and the circle 𝐴𝐵𝐶.

• Construct 𝑁 between 𝐵 and 𝐶 such that 𝐶𝑁 = 𝐴𝑀 .

• Construct 𝑄 on 𝐴𝑀 such that triangles 𝐴𝑄𝐵 and 𝐶𝑀𝐵 are congruent.

Markers’ comments

The majority of successful approaches to this question followed the format set out in the solution
above. The key element was introducing an additional point to provide a more workable
interpretation of the unusual conditions in the problem statement. The markers were impressed
by the high level of creativity demonstrated, with more than ten distinct additional points
introduced across various solutions.
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Approaches of this nature lost marks where theorems (such as the “angle in a semicircle”
theorem) were used implicitly rather than being clearly stated. Similarly, marks were deducted
when a solution depended on the order of points along a line but failed to justify it. For example,
if 𝑄 ≠ 𝑃 is chosen on line 𝐴𝑀 such that 𝐵𝑃 = 𝐵𝑄, it must be established that 𝑄 lies strictly
on segment 𝐴𝑀 rather than on the extension of ray 𝐴𝑀 beyond 𝑀 for most solutions to work.

Another common method was using sine rule to handle the equal angles, as in the alternative
solution above. When sine rule was used to show 𝐵𝑀 = 𝑃𝑀, there were typically no issues.
However, if the solution instead attempted to prove an angle equality, such as ∠𝐵𝑃𝑀 = ∠𝑀𝐵𝑃,
from equal sines (sin ∠𝐵𝑃𝑀 = sin ∠𝑀𝐵𝑃), the argument needed to address both possible
cases: either the angles are equal or they sum to 180◦. Many students correctly ruled out the
supplementary case by showing that the angles they were considering were part of a triangle.
Those who did not provide such reasoning incurred a substantial penalty.
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Question 5

Let 𝑝 be a prime number, and let 𝑛 be the smallest positive integer, strictly greater than 1,
for which 𝑛6 − 1 is divisible by 𝑝.
Prove that at least one of (𝑛 + 1)6 − 1 and (𝑛 + 2)6 − 1 is divisible by 𝑝.

Solution

We begin by noting that 𝑛6−1 = (𝑛3)2−1 is a difference of two squares so 𝑛6−1 = (𝑛3−1) (𝑛3+1).
Next we observer that since 𝑛3 − 1 has 1 as a root it has (𝑛 − 1) as a factor, while 𝑛3 + 1 has
𝑛 + 1 as a factor. Thus 𝑛6 − 1 = (𝑛 − 1) (𝑛2 + 𝑛 + 1) (𝑛 + 1) (𝑛2 − 𝑛 + 1).
Now suppose we have some prime 𝑝. If 𝑛 is the least integer greater than 1 such that 𝑝 divides
𝑛6 − 1 (written 𝑝 | (𝑛6 − 1)).
We have that 𝑝 | (𝑛 − 1) (𝑛2 + 𝑛 + 1) (𝑛 + 1) (𝑛2 − 𝑛 + 1) so 𝑝 divides one of these four factors.

Moreover, provided 𝑛 > 3, we know that 𝑝 does not divide (𝑛 − 1)6 − 1 or (𝑛 − 2)6 − 1 since 𝑛
is minimal. (We need 𝑛 > 3 to ensure 𝑛 − 2 > 1.)

Using the factorisation above and with some simplifications like (𝑛−1)2+ (𝑛−1) +1 = 𝑛2−𝑛+1
we note that:

𝑝 does not divide (𝑛 − 1)6 − 1 = (𝑛 − 2) (𝑛2 − 𝑛 + 1)𝑛(𝑛2 − 3𝑛 + 3);
𝑝 does not divide (𝑛 − 2)6 − 1 = (𝑛 − 3) (𝑛2 − 3𝑛 + 3) (𝑛 − 1) (𝑛2 − 5𝑛 + 7).
These imply that, while 𝑝 divides one of the four factors (𝑛−1), (𝑛2+𝑛+1), (𝑛+1), (𝑛2−𝑛+1)
for any 𝑛 where 𝑝 | (𝑛6 − 1), for the least 𝑛 > 1 we must have either 𝑝 | (𝑛2 + 𝑛 + 1) or
𝑝 | (𝑛 + 1).
In the first of these case we see that 𝑝 divides (𝑛 + 1)6 − 1 = 𝑛(𝑛2 + 3𝑛 + 3) (𝑛 + 2) (𝑛2 + 𝑛 + 1);
in the second case 𝑝 divides (𝑛 + 2)6 − 1 = (𝑛 + 1) (𝑛2 + 5𝑛 + 7) (𝑛 + 3) (𝑛2 + 3𝑛 + 3).
The problem is essentially solved except that we have assumed that 𝑛 > 3. If 𝑛 = 2, then
𝑛6 − 1 = 63 = 32 × 7, so 𝑛 = 2 is the least 𝑛 for 𝑝 = 3 and 𝑝 = 7. We have that 3
divides 46 − 1 = 4095 and 7 divides 36 − 1 = 728 so the problem conditions are satisfied
for these primes. If 𝑛 = 3 then 𝑛6 − 1 = 728 = 23 × 7 × 13, so 3 is the minimal 𝑛 for
the primes 2 and 13. It is clear that 2 divides 56 − 1 since it even. We also note that
46 − 1 = 4095 = 5 × 819 = 5 × 9 × 91 = 32 × 5 × 7 × 13 so 13 | 46 − 1 as required.

Alternative

It is possible to phrase a solution in the language of modular arithmetic which deals with
the small cases slightly differently. As before we begin by observing that, for a given prime
𝑝, if 𝑛 is the least integer greater than one such that 𝑝 | 𝑛6 − 1 then 𝑝 divides one of
(𝑛 − 1), (𝑛2 + 𝑛 + 1), (𝑛 + 1), (𝑛2 − 𝑛 + 1). We now consider these cases in turn.

Case I: If 𝑝 | 𝑛 − 1, then 𝑛 ≡ 1 (mod 𝑝).
Now (𝑛 − 2)6 − 1 ≡ (−1)6 − 1 ≡ 0 (mod 𝑝). Since 𝑛 is minimal, it must be the case that 𝑛 − 2
is not greater than 1, so 𝑛 = 3 meaning 𝑝 = 2. In this case we note that 2 | (𝑛 + 2)6 − 1 as 56 − 1
is even.
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Case II: If 𝑝 | 𝑛2 + 𝑛 + 1, then 𝑛 + 1 ≡ −𝑛2 (mod 𝑝).
Now (𝑛 + 1)6 − 1 ≡ (−𝑛2)6 − 1 ≡ (𝑛6 − 1) (𝑛6 + 1) ≡ 0 × 2 (mod 𝑝).
Case III: If 𝑝 | 𝑛 + 1, then 𝑛 + 1 ≡ 0 (mod 𝑝).
Now (𝑛 + 2)6 − 1 ≡ 16 − 1 ≡ 0 (mod 𝑝).
Case IV: If 𝑝 | 𝑛2 − 𝑛 + 1, then 𝑛2 ≡ −(𝑛 − 1) (mod 𝑝).
In this case (𝑛 − 1)6 − 1 ≡ (𝑛2)6 − 1 ≡ (𝑛6 − 1) (𝑛6 + 1) ≡ 0 × 2 ≡ 0 (mod 𝑝). Since 𝑛 is
minimal, it must be the case that 𝑛− 1 is not greater than 1, so 𝑛 = 2 meaning that 𝑝 | 22 − 2 + 1
so 𝑝 = 3. In this case we note that 3 | (2 + 2)6 − 1.

This completes the proof.

Markers’ comments

This problem splits naturally into four separate cases depending on which of the factors of
𝑛6 − 1 = (𝑛 − 1) (𝑛 + 1) (𝑛2 + 𝑛 + 1) (𝑛2 − 𝑛 + 1) is divisible by 𝑝. In order to solve the problem
successfully, candidates had to identify that one of these factors was divisible by 𝑝 and then
handle all four of the resulting cases. Candidates who handled some but not all of the cases
were generally awarded partial marks.

Some candidates partially factorised 𝑛6 − 1, for example as (𝑛3 + 1) (𝑛3 − 1), and attempted to
handle some number of cases other than four. While some of these candidates were able to
pick up partial credit for handling some of the cases, it is not feasible to solve this problem
entirely without a complete factorisation. Candidates who did not factorise 𝑛6 − 1 at all rarely
obtained any substantial credit.

Some candidates correctly factorised 𝑛6 − 1, but then falsely claimed that 𝑝 had to be equal
to one of the resulting factors. A counterexample to this claim is 𝑝 = 19, where 𝑛 = 7 and
𝑝 | 𝑛2 + 𝑛 + 1 = 57. These candidates received very little credit, as all of their progress relied
on an early incorrect step.

There were a few instances of candidates misunderstanding the conditions in the question.
When the question states “let 𝑛 be the smallest positive integer . . . ”, it means the smallest
positive integer for the particular fixed value of 𝑝, not the smallest positive integer overall.
Thus, it is an error to state that we must have 𝑛 = 2.

Moreover, we cannot make any assumptions about the prime 𝑝. Some candidates attempted
to justify the (false) claim that one of the four factors of 𝑛6 − 1 must be equal to 𝑝 by stating

that, e.g. if 𝑝 | 𝑛2 + 𝑛 + 1, then the minimal possible value of 𝑛 is −1+
√

4𝑝−3
2 and therefore

𝑝 = 𝑛2 + 𝑛 + 1. This argument is incorrect as it assumes that −1+
√

4𝑝−3
2 is an integer, which is

not true for most primes 𝑝.

Many (indeed, most) candidates who submitted otherwise successful solutions failed to consider
exceptional cases that arise when 𝑛 = 2 or 𝑛 = 3. The reason why separate consideration of
these cases is necessary is that arguments of the form “this contradicts 𝑛 being minimal because
I can find a smaller 𝑛 that works” break down if the smaller value of 𝑛 is too small to be allowed.

The case 𝑛 = 2 requires consideration of 𝑝 = 3 and 𝑝 = 7, the prime factors of 26 − 1 = 63,
while the case 𝑛 = 3 requires consideration of 𝑝 = 2, 7, 13, the prime factors of 36 − 1 = 728.
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However, some candidates were able to avoid handling all of these cases separately, as in
the alternative solution above, by noting that the case 𝑛 = 2 only causes an exception when
𝑝 | 𝑛2 − 𝑛 + 1 and so 𝑝 = 3, and the case 𝑛 = 3 only causes an exception when 𝑝 = 2.

Failing to handle the cases where 𝑛 is small (or handling them incorrectly) was considered a
minor omission, and candidates whose solutions were otherwise correct scored close to full
marks, with a small number of marks deducted depending on the severity of the omission.
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Question 6

Björk has 64 sugar cubes, all of size 1 × 1 × 1. Each sugar cube is either white or demerara
or muscovado in flavour. She piles the sugar cubes into a neat 4 × 4 × 4 cube.
Prove that there must be 12 sugar cubes of the same flavour which can be put into 6 disjoint
pairs so that the distance between the centres of the cubes in each pair is the same.

Solution

The original cube can be split into eight disjoint (i.e. non-overlapping) subcubes of size 2×2×2
as shown by the bold lines in the diagram on the left below. Each subcube can be split into two
sets of four cubes whose centres form the vertices of a regular tetrahedron of edge length

√
2 as

shown on the right below. By the pigeonhole principle, two of these vertices must have the
same flavour, giving 16 same-flavour pairs at a distance of

√
2. By the extended pigeonhole

principle, one of the flavours must appear as at least six of these pairs (since 16 > 5 × 3).

Alternative

We may work with regular tetrahedra of edge length
√

8 = 2
√

2.

Markers’ comments

Many contestants just constructed a single example with 6 same-flavour pairs at the same
distance. The question was clear that there must be 6 pairs, however the flavours are distributed
in the overall cube.

Many contestants correctly observed that there must be at least 22 cubes of the same flavour,
by the extended pigeonhole principle. This was not rewarded, because it does not lead to any
known solution. It is possible that having 22 cubes does not guarantee 6 pairs of that flavour at
the same distance; the 6 pairs might come from one of the flavours with fewer cubes.

Next, they often placed the 231 distances between these 22 cubes into pigeonholes given by the
18 possible distances. This proves that at least 13 same-flavour pairs share the same distance.
But converting this into six disjoint same-flavour pairs appears to be impossible.

Some contestants inserted these 22 cubes into the eight 2 × 2 × 2 subcubes, or even the 16
regular tetrahedra. But they made assumptions about where these cubes had to go which were
not guaranteed to be true.

Many contestants split the overall cube into sensible subproblems. But often these subproblems
overlapped with each other, for example more than eight 2 × 2 × 2 subcubes, or horizontal and
vertical 4 × 1 × 1 cuboids. These provided plenty of same-flavour pairs at the same distance,
but they could not be shown to be disjoint.
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The first step in this problem is to split the overall cube into disjoint subproblems. This ensures
that any same-flavour pairs are disjoint. The second step is to control the distance between
pairs. A distance of 1 is unfruitful; it is easy to construct an example with no same-flavour
pairs at a distance of 1. As far as we know,

√
2 and

√
8 are the only options. The final step is to

ensure that enough of these same-distance pairs have the same flavour overall.

A few contestants split the overall cube into eight 2 × 2 × 2 subcubes. They claimed that
each subcube provided 2 same-flavour pairs both at a distance of

√
2. With plenty of careful

diagrams and explanation, they convinced the markers that they had dealt with all possible
combinations of flavours in each subcube. This was not an easy task.

The majority of successful solutions explicitly or implicitly split each 2 × 2 × 2 subcube into
2 sets of 4 cubes whose centres form the vertices of a regular tetrahedron of edge length

√
2.

Occasionally they were penalised if their explanation of this splitting was unclear.
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