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British Mathematical Olympiad
Round 2 : Tuesday, 30 January 2007

Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then draft your final version
carefully before writing up your best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than partial attempts at all four problems.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

In early March, twenty students will be invited
to attend the training session to be held at
Trinity College, Cambridge (29th March - 2nd
April). At the training session, students sit a
pair of IMO-style papers and 8 students will be
selected for further training. Those selected will
be expected to participate in correspondence work
and to attend further training. The UK Team of
six for this summer’s International Mathematical
Olympiad (to be held in Hanoi, Vietnam 23-31
July) will then be chosen.

Do not turn over until told to do so.
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1. Triangle ABC has integer-length sides, and AC = 2007. The internal
bisector of 6 BAC meets BC at D. Given that AB = CD, determine
AB and BC.

2. Show that there are infinitely many pairs of positive integers (m,n)
such that

m + 1

n
+

n + 1

m

is a positive integer.

3. Let ABC be an acute-angled triangle with AB > AC and 6 BAC =
60o. Denote the circumcentre by O and the orthocentre by H and let
OH meet AB at P and AC at Q. Prove that PO = HQ.

Note: The circumcentre of triangle ABC is the centre of the circle which

passes through the vertices A,B and C. The orthocentre is the point of

intersection of the perpendiculars from each vertex to the opposite side.

4. In the land of Hexagonia, the six cities are connected by a rail network
such that there is a direct rail line connecting each pair of cities. On
Sundays, some lines may be closed for repair. The passengers’ rail
charter stipulates that any city must be accessible by rail from any
other (not necessarily directly) at all times. In how many different
ways can some of the lines be closed subject to this condition?


