1. Prove that if the polynomial
 \[p(x) = a_0x^n + a_1x^{n-1} + \ldots + a_{n-1}x + a_n, \]
 whose coefficients are integers, takes the value 1990 for four distinct integer values of \(x \), then it cannot take the value 1997 for any integer value of \(x \).

2. The integer part \([x]\) of a number \(x \) is the greatest integer which is not greater than \(x \). The fractional part \(f(x) \) is defined by \(f(x) = x - [x] \).
 Find a positive number \(x \) such that
 \[f(x) + f\left(\frac{1}{x}\right) = 1. \]
 Are there any rational solutions?

3. State the cosine rule for a triangle.
 Prove that for arbitrary positive real numbers \(a, b, c \),
 \[\sqrt{a^2 + b^2 - ab} + \sqrt{b^2 + c^2 - bc} \geq \sqrt{a^2 + c^2 + ac}. \]

4. Let \(d \) denote the length of the smallest diagonal of all rectangles inscribed in a triangle \(T \). (By inscribed we mean that all vertices of the rectangle lie on the boundary of \(T \)).
 Determine the maximum value of \(d^2/\text{area}(T) \) taken over all triangles.

5. \(I \) is the centre of the circle inscribed to triangle \(ABC \); \(J \) is the centre of the escribed circle which touches \(AB \) and \(AC \) produced beyond \(B \) and \(C \) respectively.
 Prove that
 \[AI.AJ = AB.AC \]
 and that
 \[AI.BJ.CJ = AJ.BI.CI. \]