Q1 Let \(x_1, x_2, \ldots, x_n \) be real numbers such that \(0 \leq x_i \leq 2 \) for each \(i \). Prove that
\[
\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j| \leq n^2.
\]
When does equality hold?

Q2 The in-circle of \(\triangle ABC \), where \(AB \parallel AC \), touches \(BC \) at \(L \), and \(LM \) is a diameter of the in-circle. \(AM \) produced cuts \(BC \) at \(N \).
(i) Prove \(NL = AB - AC \).
(ii) A circle \(S \) of variable radius touches \(BC \) at \(M \). The tangents (other than \(BC \)) from \(B \) and \(C \) to \(S \) intersect at \(P \). \(P \) moves as the radius of \(S \) varies. Find the locus of \(P \).

Q3 The sequence \(u_n \) is defined for positive integers by
\[
u_1 = 1, \quad u_{n+1} = u_n + \lfloor \sqrt{u_n} \rfloor, \quad (n \geq 1).
\]
Here \(\lfloor x \rfloor \) denotes the nearest integer to \(x \), i.e. the integer \(M \) such that \(x - \frac{1}{2} \leq M < x + \frac{1}{2} \).
Determine, with proof, the final (i.e. rightmost) digit of the integer \(u_{1985} \).

Q4 Let \(A, B, C, D \) be points on a sphere of radius 1. Given that
\[AB \cdot BC \cdot CA \cdot DA \cdot DB \cdot DC = \frac{512}{27},\]
prove ABCD a regular tetrahedron.

Q5 Let \(B_n \) be the number of ways of partitioning a set with \(n \) elements, i.e. expressing it as the union of one or more non-empty subsets, no two of which have a common element. Eg. \(B_3 = 5 \), the partitionings of \(\{abc \} \) being
\[a,b,c \quad a,bc \quad b,ac \quad c,ab \quad abc\]
Let \(C_n \) be the number of partitionings in which each subset has more than one element, e.g. \(C_3 = 1 \). Prove that for \(n \geq 1 \)
\[
C_n = B_{n-1} - B_{n-2} + B_{n-3} - \ldots + (-1)^n B_1.
\]

Q6 Solve in non-negative integers \(x, y, z \) the equation
\[5^x \cdot 7^y + 4 = 3^z.\]