Problem 1. Determine all composite integers $n>1$ that satisfy the following property: if $d_{1}, d_{2}, \ldots, d_{k}$ are all the positive divisors of n with $1=d_{1}<d_{2}<\cdots<d_{k}=n$, then d_{i} divides $d_{i+1}+d_{i+2}$ for every $1 \leqslant i \leqslant k-2$.

Problem 2. Let $A B C$ be an acute-angled triangle with $A B<A C$. Let Ω be the circumcircle of $A B C$. Let S be the midpoint of the arc $C B$ of Ω containing A. The perpendicular from A to $B C$ meets $B S$ at D and meets Ω again at $E \neq A$. The line through D parallel to $B C$ meets line $B E$ at L. Denote the circumcircle of triangle $B D L$ by ω. Let ω meet Ω again at $P \neq B$.
Prove that the line tangent to ω at P meets line $B S$ on the internal angle bisector of $\angle B A C$.
Problem 3. For each integer $k \geqslant 2$, determine all infinite sequences of positive integers a_{1}, a_{2}, \ldots for which there exists a polynomial P of the form $P(x)=x^{k}+c_{k-1} x^{k-1}+\cdots+c_{1} x+c_{0}$, where $c_{0}, c_{1}, \ldots, c_{k-1}$ are non-negative integers, such that

$$
P\left(a_{n}\right)=a_{n+1} a_{n+2} \cdots a_{n+k}
$$

for every integer $n \geqslant 1$.

Problem 4. Let $x_{1}, x_{2}, \ldots, x_{2023}$ be pairwise different positive real numbers such that

$$
a_{n}=\sqrt{\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right)}
$$

is an integer for every $n=1,2, \ldots, 2023$. Prove that $a_{2023} \geqslant 3034$.
Problem 5. Let n be a positive integer. A Japanese triangle consists of $1+2+\cdots+n$ circles arranged in an equilateral triangular shape such that for each $i=1,2, \ldots, n$, the $i^{\text {th }}$ row contains exactly i circles, exactly one of which is coloured red. A ninja path in a Japanese triangle is a sequence of n circles obtained by starting in the top row, then repeatedly going from a circle to one of the two circles immediately below it and finishing in the bottom row. Here is an example of a Japanese triangle with $n=6$, along with a ninja path in that triangle containing two red circles.

In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path containing at least k red circles.

Problem 6. Let $A B C$ be an equilateral triangle. Let A_{1}, B_{1}, C_{1} be interior points of $A B C$ such that $B A_{1}=A_{1} C, C B_{1}=B_{1} A, A C_{1}=C_{1} B$, and

$$
\angle B A_{1} C+\angle C B_{1} A+\angle A C_{1} B=480^{\circ} .
$$

Let $B C_{1}$ and $C B_{1}$ meet at A_{2}, let $C A_{1}$ and $A C_{1}$ meet at B_{2}, and let $A B_{1}$ and $B A_{1}$ meet at C_{2}. Prove that if triangle $A_{1} B_{1} C_{1}$ is scalene, then the three circumcircles of triangles $A A_{1} A_{2}, B B_{1} B_{2}$ and $C C_{1} C_{2}$ all pass through two common points.
(Note: a scalene triangle is one where no two sides have equal length.)

