Group testing: Finding needles in haystacks

Oliver Johnson bristoliver.substack.com

University of Bristol

IMO reception London 22nd September 2025

Section 1:

Toxic talk treat teaser

- Professor J is talking to students at the IMO reception.
- 7 plates of delicious post-lecture snacks.
- Professor J's evil nemesis, Dr X, has poisoned one of them.
- Whoever eats that snack will fall asleep for 24 hours.
- How to find the poisoned food, as efficiently as possible?
- Can pay any IMO helper £10 to eat what we tell them.

How to solve the mystery?

- One idea: pay 7 helpers to eat one snack each ('individual testing')
- One will fall asleep.
- Will cost us £70.
- Better idea: use the following strategy (only costs £30).

	Olives	Nuts	Bread sticks	Crisps	Dip	Cheese straws	Jelly	
Helper 1	√	×	\checkmark	×	√	×	\checkmark	
Helper 2	✓	\checkmark	×	×	\checkmark	✓	×	
Helper 3	✓	\checkmark	\checkmark	\checkmark	×	×	×	

Outcome

	Olives	Nuts	Bread sticks	Crisps	Dip	Cheese straws	Jelly	
Helper 1							√	222
Helper 2							×	() () () () () () () () () ()
Helper 3	✓	\checkmark	\checkmark	\checkmark	×	×	×	

- Solution: breadsticks were poisoned.
- Strategy based on binary representation?
- This strategy would always work.
- But what if more than one snack poisoned?

More interesting problems

- What if you had 500 snacks, with 10 poisoned?
- How many helpers would we need?
- What should we get them to eat?
- How would we find the poisoned snacks?
- What if some helpers are immune to poison ... or fall asleep anyway?
- This is group testing.

Section 2: The IMO and me

A bit about me

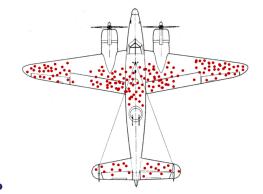
- 1991, 1992 UK IMO team Sweden and Russia.
- 1995 Cambridge Maths degree.
- 1999 Cambridge PhD.

•

2024 Head of School of Mathematics, University of Bristol.

But actually how it looked

- 1991, 1992 UK IMO team Sweden and Russia.
- 1995 Cambridge Maths degree.
- 1999 Cambridge PhD.



2024 Head of School of Mathematics, University of Bristol.

Theorem

IMO success is neither a necessary or sufficient condition for an academic career.

- Very rarely have to find functions such that f(f(2025) + 1) = 2025.
- Hit my talent wall with geometry, combinatorics and other things.
- Found interesting problems via probability (and information theory).
- Write theoretical papers but also work with engineers, CS, biologists.
- Had fun using simple maths ideas for COVID public engagement.

Section 3:

Adaptive group testing algorithms

What is group testing?

- A way of efficiently testing a large population for a rare disease.
- A toy model that throws up some interesting combinatorics problems.
- A framework used in many applied fields.
- See our survey for more detail (joint with Matt Aldridge, Jon Scarlett)
- Free version at arxiv:1902.06002.

Start of the group testing problem

- 1942/3, US wanted to test all men joining army for syphilis.
- Tests not cheap, so overall potentially very expensive.
- Condition rare, so test outcomes known with high probability.
- Idea: pool blood from a group of people, test it together:
 - ▶ If syphilis present in any blood sample, test outcome is positive.
 - If no syphilis present, test outcome is negative.
- Obviously an idealization.
- Call this standard noiseless group testing.

Notation

- Refer to population as 'items' (say N of them).
- Refer to infected people as 'defective' (say $K \ll N$ of them).
- ullet Sometimes refer to defective set \mathcal{K} (collection of infected people).
- Write $\widehat{\mathcal{K}}$ for estimate of defective set.
- Define success probability $\mathbb{P}(\text{suc}) = \mathbb{P}(\widehat{\mathcal{K}} = \mathcal{K})$.
- Do T tests, hope to have high $\mathbb{P}(suc)$.

Olympiad maths ... the magic number

- Argument: if we want $\mathbb{P}(\text{suc}) = 1$, the pigeonhole principle means we need $T \geq T^* = \log_2 \binom{N}{K}$ tests.
- **Proof**: There are 2^T combinations of test results, but there are $\binom{N}{K}$ possible defective sets that each must give a different set of results.
- Call T^* the magic number.

Theorem (BJA, ISIT13)

Choose defective set uniformly from $\binom{N}{K}$ sets of size K. For standard noiseless group testing, any test design and any algorithm:

$$\mathbb{P}(\mathrm{suc}) \le 2^{-(T^*-T)} = \frac{2^T}{\binom{N}{K}}.$$

• Success probability decays exponentially below magic number of tests.

Dorfman testing

 Simplest strategies are adaptive (choice of tests depends on results of previous tests).

Algorithm (Dorfman testing)

Dorfman suggested two stage strategy:

- Split large group of people into pools, test each pool together.
- 2 If negative, know everyone is disease-free.
- 3 If positive, retest individually.
 - Basic strategy for COVID-19 pooled testing.
 - At low prevalence can save many tests.
 - With large initial pools can be inefficient to retest individually.
 - Binary search strategy is better.
- Hwang's algorithm (JASA 1972) essentially achieves magic number.

Drawback of adaptive testing

- Binary search can take many rounds of tests.
- For COVID this could be close to generation time.
- Trade-off between tests saved and value of each one.
- PCR testing is parallel: need to declare whole test strategy in advance.
- How well can we do non-adaptively?

Section 4:

Non-adaptive group testing algorithms

Standard non-adaptive noiseless group testing

İ	i	İ	i	İ	i	m	
II	II .	II	II.	II	II	II	Outcome Y
1	1	1	0	0	0	0	Positive
0	0	0	1	1	1	1	Positive
1	0	0	0	0	0	0	Negative
0	1	0	0	0	0	0	Positive
0	0	0	1	1	0	0	Positive
0	0	0	1	0	0	0	Positive
	1 0	1 0 0 1	1 0 0 0 1 0	1 0 0 0 0 1 0 0	0 0 0 1 1 1 0 0 0 0 0 1 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0	0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

- Represent pooling strategy via binary test matrix.
- Rows are tests, columns are people or 'items'.
- Put a 1 if item is in test.
- Red denotes being defective

In practice

?	?	?	?	?	?	?	?	Outcome
1	1	1	1	0	0	0	0	Positive
0	0	0	0	1	1	1	1	Positive
1	1	0	0	0	0	0	0	Negative
0	0	1	0	0	0	0	0	Positive
0	0	0	0	1	1	0	0	Positive
0	0	0	0	1	0	0	0	Positive

- Want to infer defective set K.
- Want as few tests as possible.
- Can separate choice of algorithm and design of matrix.

COMP algorithm (Chan, Che, Jaggi, Saligrama 2011)

Algorithm (COMP)

- Algorithm has two stages:
 - 4 All items in a negative test are non-defective . . .
 - 2 Mark all remaining items (Possible Defectives) as defective.

COMP example

?	?	?	?	?	?	?	
1	0	1	0	0	1	0	Negative
1	1	0	1	0	0	1	Positive
1	0	0	0	1	0	0	Negative
0	1	1	0	1	1	0	Positive
1	0	1	1	0	1	0	Positive

- First, look at negative tests.
- Test 1 is negative, so items 1,3,6 are non-defective.
- Test 3 is negative, so items 1,5 are non-defective.
- Hence items 2,4,7 are possible defectives (PDs).
- COMP algorithm: declare 2,4,7 to be defective.

COMP performance

- COMP makes no errors in the first stage.
- Item labelled as non-defective must indeed be so.
- ullet COMP estimate $\widehat{\mathcal{K}}$ contains no false negatives.
- Works OK, but not really optimal.

DD algorithm (ABJ 2014)

Algorithm (DD)

- Algorithm has three stages (first stage is same as COMP):
 - All items in a negative test are non-defective . . . leaving smaller set of possible defectives (PDs).
 - 2 Look for positive tests with **exactly one** PD item in . . . that item must be defective.
 - 3 Deal with others arbitrarily e.g. mark as non-defective.

DD example: Stage 2

Ť	?	Ť	?	Ť	Ť	?	
	0		0			0	_
	1		1			1	Positive
	0		0			0	
	1		0			0	Positive
	0		1			0	Positive

- Restrict to submatrix corresponding to the PD set
- Test 4 is positive with one PD item in, so item 2 is defective.
- Test 5 is positive with one PD item in, so item 4 is defective.
- Up to this point, inference is definitely correct.

DD example: Stage 3

Ť	Ť	Ť	Ť	Ť	Ť	?	
	0		0			0	
	1		1			1	Positive
	0		0			0	
	1		0			0	Positive
	0		1			0	Positive

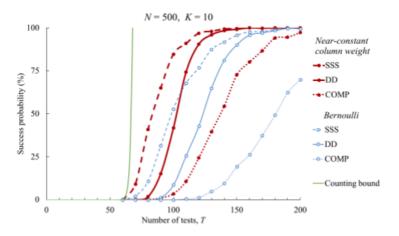
- Don't know about item 7.
- Arbitrarily, make it non-defective (sparsity grounds).
- Probably the obvious algorithm.
- However can prove performance bounds.

Section 5: Algorithm performance

Matrix designs

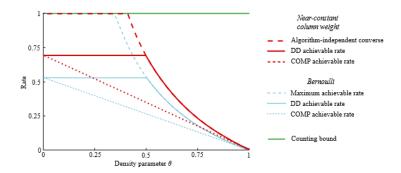
- How to choose test strategy (design the text matrix)?
- COMP and DD should work for any design given enough tests.
- Hope a sensible random matrix performs well on average.
- Common strategy in combinatorics see 'probabilistic method'.
- Most basic design is Bernoulli(p) every item in every test independently with probability p.
- This design is relatively easy to analyse.
- Constant column-weight matrix can perform better (though harder to analyse).

Can give performance bounds by simulation



Can give performance bounds theoretically

- Study regime where $K = N^{\theta}$, $N \to \infty$ for fixed $0 < \theta < 1$.
- Rate is 'what proportion of magic number of tests do we need?'



Variations on the model

- Can make assumptions more realistic:
 - Binary vs non-binary outcomes
 - Noiseless vs noisy
 - Number of defectives known or unknown
 - Fixed number of defectives vs defective with fixed probability (or community infection structure)

```
THANK
 YOU
 FOR
 LISTENING! |
(\__/) ||
(・人・) ||
```