Next Selection Test: 4 hours 30 minutes

Oundle, May 27, 2003

1. Let \(p_1, p_2, \ldots, p_n \) be distinct prime numbers greater than 3. Show that \(2^{p_1 p_2 \cdots p_n} + 1 \) has at least \(4^n \) divisors.

2. Let \(ABC \) be a triangle for which there exists an interior point \(F \) such that \(\angle AFB = \angle BFC = \angle CFA \). Let the lines \(BF \) and \(CF \) meet the sides \(AC \) and \(AB \) at \(D \) and \(E \) respectively. Prove that

\[
AB + AC \geq 4DE.
\]

3. Let \(P \) be a cubic polynomial given by \(P(x) = ax^3 + bx^2 + cx + d \), where \(a, b, c, d \) are integers and \(a \neq 0 \). Suppose that \(xP(x) = yP(y) \) for infinitely many pairs \(x, y \) of integers with \(x \neq y \). Prove that the equation \(P(x) = 0 \) has an integer root.