1. Find all nondecreasing functions \(f : \mathbb{R} \to \mathbb{R} \) such that

 (a) \(f(0) = 0, \ f(1) = 1; \)

 (b) \(f(a) + f(b) = f(a)f(b) + f(a + b - ab) \) for all real numbers \(a, b \) such that \(a < 1 < b. \)

2. Let \(\Gamma_1, \Gamma_2, \Gamma_3 \) and \(\Gamma_4 \) be distinct circles such that \(\Gamma_1, \Gamma_3 \) are externally tangent at \(P, \) and \(\Gamma_2, \Gamma_4 \) are externally tangent at the same point \(P. \) Suppose that \(\Gamma_1 \) and \(\Gamma_2; \Gamma_2 \) and \(\Gamma_3; \Gamma_3 \) and \(\Gamma_4; \Gamma_4 \) and \(\Gamma_1 \) meet at \(A, B, C \) and \(D, \) and that these points are different from \(P. \)

 Prove that

 \[
 \frac{AB \cdot BC}{AD \cdot DC} = \frac{PB^2}{PD^2}.
 \]

3. Each positive integer \(a \) (written in base 10 notation) undergoes the following procedure in order to obtain the number \(d = d(a): \)

 (a) move the last digit of \(a \) to the first position to obtain the number \(b; \)

 (b) square \(b \) to obtain the number \(c; \)

 (c) move the first digit of \(c \) to the end to obtain the number \(d. \)

(For example, for \(a = 2003, \) we get \(b = 3200, \ c = 10240000, \) and \(d = 02400001 = 240001 = d(2003). \))

Find all numbers \(a \) for which \(d(a) = a^2. \)