1. Circles Γ_1 and Γ_2 meet at M and N. Let A be on Γ_1 and D on Γ_2. The lines AM and AN meet Γ_2 again at B and C respectively; the line DM and DN meet Γ_1 again at E and F, respectively. Assume that M, N, F, A, E are in cyclic order around Γ_1, and that AB and DE are congruent. Prove that A, F, C and D lie on a circle whose centre does not depend on the position of A and D on the circles.

2. Let $n \geq 2$ be an integer, and let a_1, \ldots, a_n be positive reals. We define the function $f : \mathbb{R}^+ \to \mathbb{R}^+$ from the positive reals to the positive reals by the formula

$$f(x) = \frac{a_1 + x}{a_2 + x} + \frac{a_2 + x}{a_3 + x} + \cdots + \frac{a_{n-1} + x}{a_n + x} + \frac{a_n + x}{a_1 + x}.$$

Show that f is a decreasing function of x.

3. Find the smallest number n such that there exist polynomials f_1, \ldots, f_n with rational coefficients satisfying

$$x^2 + 7 = f_1(x)^2 + f_2(x)^2 + \cdots + f_n(x)^2.$$

Each question is worth seven marks.

Time: 4 hours, 30 minutes.