NST 4, Eton and Oundle, 2009

 $A \rightarrow \mathcal{L}$

a, not at 1)

- 1. The triangle ABC has a right angle at C. Let P be a point inside ABC such that |AP| = |AC|. Let M be the midpoint of the hypotenuse AB and T be the foot of the altitude dropped from A. Prove that PM is a bisector of $\angle BPT$ if, and only if, $\angle A = 60^{\circ}$.
- 2. Let n > 1 be a positive integer. Find all n-tuples (a_1, a_2, \ldots, a_n) of positive integers which are pairwise distinct, pairwise coprime, and such that for each i in the range $1 \le i \le n$ we have $a+1+a_2+\cdots+a_n$ divides $a_1^i+a_2^i+\cdots+a_n^i$.
- 3. A graph has 15 vertices. There is at most one edge between each pair of vertices, and no edge connects a vertex to itself. Each edge is coloured either red or blue so that there are no monochromatic triangles. Find the largest possible number of edges of this graph.