THE 3RD ROMANIAN MASTER OF MATHEMATICS COMPETITION
DAY 2: SATURDAY, FEBRUARY 27, 2010, BUCHAREST

Language: English

Problem 4. Determine whether there exist a polynomial \(f(x_1, x_2) \) in two variables, with integer coefficients, and two points \(A = (a_1, a_2) \) and \(B = (b_1, b_2) \) in the plane, satisfying all the following conditions:

(i) \(A \) is an integer point (i.e., \(a_1 \) and \(a_2 \) are integers);
(ii) \(|a_1 - b_1| + |a_2 - b_2| = 2010\);
(iii) \(f(n_1, n_2) > f(a_1, a_2) \), for all integer points \((n_1, n_2) \) in the plane other than \(A \);
(iv) \(f(x_1, x_2) > f(b_1, b_2) \), for all points \((x_1, x_2) \) in the plane other than \(B \).

Problem 5. Let \(n \) be a given positive integer. Say that a set \(K \) of points with integer coordinates in the plane is connected if for every pair of points \(R, S \in K \), there exist a positive integer \(\ell \) and a sequence \(R = T_0, T_1, \ldots, T_\ell = S \) of points in \(K \), where each \(T_i \) is distance 1 away from \(T_{i+1} \). For such a set \(K \), we define the set of vectors

\[\Delta(K) = \{ \overrightarrow{RS} \mid R, S \in K \}. \]

What is the maximum value of \(|\Delta(K)|\) over all connected sets \(K \) of \(2n + 1 \) points with integer coordinates in the plane?

Problem 6. Given a polynomial \(f(x) \) with rational coefficients, of degree \(d \geq 2 \), we define the sequence of sets \(f^0(Q), f^1(Q), \ldots \) by \(f^0(Q) = Q \) and \(f^{n+1}(Q) = f(f^n(Q)) \) for \(n \geq 0 \). (Given a set \(S \), we write \(f(S) \) for the set \(\{ f(x) \mid x \in S \} \).)

Let \(f^\omega(Q) = \bigcap_{n=0}^{\infty} f^n(Q) \) be the set of numbers that are in all of the sets \(f^n(Q) \). Prove that \(f^\omega(Q) \) is a finite set.

Each of the three problems is worth 7 points.
Time allowed: 4 \(\frac{1}{2} \) hours.