The 8th Romanian Master of Mathematics Competition

Day 2: Saturday, February 27, 2016, Bucharest

Language: English

Problem 4. Let x and y be positive real numbers such that $x + y^{2016} \ge 1$. Prove that $x^{2016} + y > 1 - 1/100$.

Problem 5. A convex hexagon $A_1B_1A_2B_2A_3B_3$ is inscribed in a circle Ω of radius R. The diagonals A_1B_2 , A_2B_3 , and A_3B_1 concur at X. For i=1,2,3, let ω_i be the circle tangent to the segments XA_i and XB_i , and to the arc A_iB_i of Ω not containing other vertices of the hexagon; let r_i be the radius of ω_i .

- (a) Prove that $R \ge r_1 + r_2 + r_3$.
- (b) If $R = r_1 + r_2 + r_3$, prove that the six points where the circles ω_i touch the diagonals A_1B_2 , A_2B_3 , A_3B_1 are concyclic.

Problem 6. A set of n points in Euclidean 3-dimensional space, no four of which are coplanar, is partitioned into two subsets \mathcal{A} and \mathcal{B} . An \mathcal{AB} -tree is a configuration of n-1 segments, each of which has an endpoint in \mathcal{A} and the other in \mathcal{B} , and such that no segments form a closed polyline. An \mathcal{AB} -tree is transformed into another as follows: choose three distinct segments A_1B_1 , B_1A_2 and A_2B_2 in the \mathcal{AB} -tree such that A_1 is in \mathcal{A} and $A_1B_1 + A_2B_2 > A_1B_2 + A_2B_1$, and remove the segment A_1B_1 to replace it by the segment A_1B_2 . Given any \mathcal{AB} -tree, prove that every sequence of successive transformations comes to an end (no further transformation is possible) after finitely many steps.

Each of the three problems is worth 7 points. Time allowed $4\frac{1}{2}$ hours.