The 16th Romanian Master of Mathematics Competition

Day 1: 12 February, 2025, Bucharest

Language: English

Problem 1. Let n > 10 be an integer, and let A_1, A_2, \ldots, A_n be distinct points in the plane such that the distances between the points are pairwise different. Define $f_{10}(j,k)$ to be the 10th smallest of the distances from A_j to A_1, A_2, \ldots, A_k , excluding A_j if $k \ge j$. Suppose that for all j and ksatisfying $11 \le j \le k \le n$, we have $f_{10}(j, j - 1) \ge f_{10}(k, j - 1)$. Prove that $f_{10}(j, n) \ge \frac{1}{2}f_{10}(n, n)$ for all j in the range $1 \le j \le n - 1$.

Problem 2. Consider an infinite sequence of positive integers a_1, a_2, a_3, \ldots such that $a_1 > 1$ and $(2^{a_n} - 1)a_{n+1}$ is a square for all positive integers n. Is it possible for two terms of such a sequence to be equal?

Problem 3. Fix an integer $n \ge 3$. Determine the smallest positive integer k satisfying the following condition:

For any tree T with vertices v_1, v_2, \ldots, v_n and any pairwise distinct complex numbers z_1, z_2, \ldots, z_n , there is a polynomial P(X, Y)with complex coefficients of total degree at most k such that for all $i \neq j$ satisfying $1 \leq i, j \leq n$, we have $P(z_i, z_j) = 0$ if and only if there is an edge in T joining v_i to v_j .

Note, for example, that the total degree of the polynomial

$$9X^{3}Y^{4} + XY^{5} + X^{6} - 2$$

is 7 because 7 = 3 + 4.

Each problem is worth 7 marks. Time allowed: $4\frac{1}{2}$ hours.