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Markers’ report

Olympiad marking

Both candidates and their teachers will find it helpful to know something of the general principles
involved in marking Olympiad-type papers. These preliminary paragraphs therefore serve as an
exposition of the ‘philosophy’ which has guided both the setting and marking of all such papers
at all age levels, both nationally and internationally.

What we are looking for is full solutions to problems. This involves identifying a suitable strategy,
explaining why your strategy solves the problem, and then carrying it out to produce an answer
or prove the required result. In marking each question, we look at the solution synoptically
and decide whether the candidate has some sort of overall strategy or not. An answer which is
essentially a solution, but might contain either errors of calculation, flaws in logic, omission of
cases or technical faults, will be marked on a ‘10 minus’ basis. One question we often ask is: if
we were to have the benefit of a two-minute interview with this candidate, could they correct
the error or fill the gap? On the other hand, an answer which shows no sign of being a genuine
solution is marked on a ‘0 plus’ basis; up to 3 marks might be awarded for particular cases or
insights.

This approach is therefore rather different from what happens in public examinations such as
GCSE, AS and A level, where credit is given for the ability to carry out individual techniques
regardless of how these techniques fit into a protracted argument. It is therefore important that
candidates taking Olympiad papers realise the importance of the comment in the rubric about
trying to finish whole questions rather than attempting lots of disconnected parts.
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Mathematical Olympiad for Girls 2013 Markers’ report

General comments

This year a new format was adopted for the Mathematical Olympiad for Girls, with some
questions split into two parts. The purpose of the first part is to introduce results or ideas needed
to answer the second part.

We were pleased that most candidates had a reasonable attempt at all the questions. Many
completed part (a) of more than one question. It was also pleasing to see a lot of candidates
making a decent attempt to explain and justify their solutions: they grasped that a single numerical
answer would not suffice.

Some candidates got involved in long calculations in Questions 1 and 3, which would have
been time-consuming. Most Olympiad questions are designed to be done without excessive
calculation, so candidates should be encouraged to look for more elegant approaches, usually
using algebra. When a long calculation seems like the only possible option, all details must be
shown. Too often candidates claim that they have checked all the possibilities, but we need to
see some evidence of this!

One of the most common mistakes that candidates made was trying to argue from special cases,
rather than realising that some generality was needed. This was most apparent in Question 2,
where many candidates considered a rectangle rather than a general quadrilateral, and in Question
4, where many only explained why certain special paths were not possible.

The 2013 Mathematical Olympiad for Girls attracted 1201 entries. The scripts were marked
on Sunday 6 October at Murray Edwards College, Cambridge by a team of James Aaronson,
Ross Atkins, Benjamin Barrett, Natalie Behague, Andrew Carlotti, Andrea Chlebikova, Philip
Coggins, James Cranch, Rosie Cretney, Susan Cubbon, Matthew Dawes, Elena Dulskyte, Paul
Fannon, Richard Freeland, Adam P. Goucher, Jo Harbour, Maria Holdcroft, Andrew Jobbings,
Vesna Kadelburg, Josh Lam, David Mestel, Joseph Myers, Vicky Neale, Peter Neumann, Sylvia
Neumann, Martin Orr, Preeyan Parmar, David Phillips, Aled Walker and Alison Zhu.
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Mathematical Olympiad for Girls 2013 Question 1

Question 1

The diagram shows three identical overlapping right-angled
triangles, made of coloured glass, placed inside an equilateral
triangle, one in each corner. The total area covered twice (dark
grey) is equal to the area left uncovered (white).
What fraction of the area of the equilateral triangle does one
glass triangle cover?

It is possible to solve this problem by calculating the sides of the dark grey area and the glass
triangles in terms of the side of the equilateral triangle. To do this, we need to write several
equations relating the lengths in all the different triangles (large, glass, dark and white). One
way to simplify the calculations slightly is to set the side of the equilateral triangle equal to 1
unit, as we are not interested in the actual areas, only in their ratios. Several candidates did this
successfully, but most of those who tried either couldn’t produce enough equations, or were not
able to deal with expressions involving surds. Many candidates derived the formula for the area
of the equilateral triangle; this is certainly needed, but did not score any marks because it is a
standard application of trigonometry.

Luckily, it turns out that we can find the ratio of areas without calculating the sides first. In fact,
it is not important that the shapes are triangles; the answer would be the same if we used any
three equal shapes that overlap in pairs. A majority of the candidates adopted this approach and
there were many successful solutions. Overall, around one-third of the candidates who attempted
this question scored full or nearly full marks.

Here is one possible argument: As the dark grey area is covered twice, if we “take off” one layer
and use it to cover the white area, then the whole equilateral triangle will be covered once. This
means that the glass from all three glass triangles exactly covers the equilateral triangle, so one
glass triangle covers one-third of the equilateral triangle. But is this explanation mathematically
rigorous?

The above argument could in fact score full marks, but it had to be clearly written. In particular, it
needs to be explicitly stated that the glass can be rearranged so that the whole triangle is covered
once. A much safer way to make the argument rigorous is to give labels to important quantities
and write some equations. Candidates who did this generally scored 9 or 10 marks.
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Mathematical Olympiad for Girls 2013 Question 1

Solution 10 marks

Method 1

Denote the whole area by E, the area of one glass triangle by T , the white area by W , one light
grey part by A and one dark grey part by B.

From the given information, we have W = 3B.

From the diagram, we have E = W + 3A+ 3B and T = A+ 2B. Using the given information, we
get E = 3A + 6B, and now we see that T = 1

3 E.

So one glass triangle covers one third of the area of the equilateral triangle.

Method 2

Let E be the whole area, T the area of one glass triangle, D the dark grey area, and W the white
area.

Since each dark grey area is covered twice, E = 3T − D +W .

But from the information given D = W , so T = 1
3 E.
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Mathematical Olympiad for Girls 2013 Question 2

Question 2

In triangle ABC, the median from A is the line AM, where M is the midpoint of the side BC.
In any triangle, the three medians intersect at the point called the centroid, which divides
each median in the ratio 2 : 1.
In the convex quadrilateral ABCD, the points A′, B′, C′ and D′ are the centroids of the
triangles BCD, CDA, DAB and ABC, respectively.
(a) By considering the triangle MCD, where M is the midpoint of AB, prove that C′D′ is

parallel to DC and that C′D′ = 1
3 DC.

(b) Prove that the quadrilaterals ABCD and A′B′C′D′ are similar.

When a diagram is not given in the question it is always worth drawing one, if only to have some-
thing you can refer to in your explanation. The purpose of a diagram is to convey information,
so be sure to draw diagrams clearly, don’t make them too small, and label them carefully. Here
you need to be aware of a labelling convention: referring to a quadrilateral as ABCD means that
the vertices A, B, C and D appear in that order as you progress around the quadrilateral. It may
also be useful to draw a new diagram once you have decided which points you need to consider.
For example, to answer part (a) you only need M , C′ and D′, not all the medians and centroids.

The term convex in the statement of the question seems to have been a source of some confusion,
with some candidates placing vertex D inside the triangle ABC. The result in question in fact
holds even when the quadrilateral is not convex. The restriction to convex quadrilaterals was
meant to avoid the need for several different diagrams.

This was by far the least popular question, and a majority of those who attempted it made little
or no progress. Rather too many candidates fell down because they started with a poor diagram.
In particular, it is a bad idea to draw ABCD as a rectangle, which is too special to represent a
general quadrilateral: the danger is that you are tempted to draw conclusions that are not true for
a more general figure.

Other candidates lost marks because they were unable to write down a careful proof that the two
triangles MCD and MC′D′ are similar and then draw appropriate conclusions. What is required
to prove two triangles similar, and what conclusions follow? There are various “tests” for two
triangles to be similar; the test you need here is for two pairs of sides to be in the same ratio and
the angles between them (the included angles) to be equal. Once you have proved two triangles
are similar, you can deduce that all pairs of sides are in the same ratio, and every angle of one
triangle is equal to the corresponding angle of the other triangle.

A few candidates proved part (a) using vectors. The proof given in Method 2 below uses the
result for the position vector of the centroid of a triangle—it is the ‘mean‘ of the position vectors
of the vertices. You may derive this result from the information about the median and the centroid
given in the question. Note that quoting the result means that this method does not explicitly use
triangle MCD, as referred to in the question; this was not penalised.

To answer part (b) you need to know what it means for two quadrilaterals to be similar. For
two triangles to be similar, it is enough that all corresponding angles are equal. This is not a
sufficient condition for quadrilaterals; for example, two rectangles have equal angles, but they
are not necessarily similar. Having all the sides in the same ratio is also not enough - think of a
rhombus and a square, for example.
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Mathematical Olympiad for Girls 2013 Question 2

It is helpful to recall the definition of similar figures. Loosely speaking, two figures are similar
if they are of the same shape, but of different sizes. More precisely, two figures are similar if
all pairs of corresponding sides are in the same ratio, and all pairs of corresponding angles are
equal. Thus in order to prove that two quadrilaterals are similar it is necessary to show that:

(i) pairs of corresponding sides are in the same ratio;
(ii) pairs of corresponding angles are equal.

Several candidates claimed that, since the sides of the two quadrilaterals are in the ratio 3 : 1, one
must be an enlargement of the other. You should remember than enlargement is a geometrical
transformation which is defined by a scale factor and a centre of enlargement. Two figures can
be similar without being related by an enlargement. In this example, a centre of enlargement
does in fact exist, but it is not any of the points mentioned in the question.

The markers felt that part (a) contained the bulk of the mathematical work needed to answer the
question, so made 7 marks available for that part.
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Mathematical Olympiad for Girls 2013 Question 2

Solution to part (a) 7 marks

C′

A B

C

D

M

D′

Method 1

We are given that M is the midpoint of AB, so that CM is a median of triangle ABC. Since
D′ is the centroid of triangle ABC, it lies on CM, and CD′ : D′M = 2 : 1. Similarly,
DC′ : C′M = 2 : 1. This means that MD′ = 1

3 MC and MC′ = 1
3 MD, so the triangles MCD

and MD′C′ have two pairs of sides in the same ratio, namely 3 : 1. The angle CMD is also
common to both triangles. Hence the triangles are similar (they have two pairs of sides in the
same ratio and the angles between those sides are equal).

It follows that the third sides are also in the ratio 3 : 1, so that C′D′ = 1
3 DC, as required.

Furthermore, corresponding angles in the two triangles are equal, so that ∠MD′C′ = ∠MCD.
We conclude that C′D′ and DC are parallel.

Method 2

Let the position vectors of the vertices be a, b, c and d, and let the position vectors of C′ and D′
be c′ and d′.

Then, since C′ is the centroid of triangle ABD, c′ = 1
3 (a + b + d). Similarly, d′ = 1

3 (a + b + c).

Hence we have

C′D′ = d′ − c′

= 1
3 (a + b + c) − 1

3 (a + b + d)

= 1
3 (c − d)

= 1
3 DC.

Therefore C′D′ is parallel to DC and C′D′ = 1
3 DC.
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Solution to part (b) 3 marks

A B

C

D

A′B′

C′
D′

We proved in part (a) that D′C′ is parallel to CD. Similarly, D′A′ is parallel to AD. Hence
∠A′D′C′ = ∠ADC. It can be shown analogously that the other corresponding angles in the two
quadrilaterals are equal.

Also from part (a), the corresponding sides of the two quadrilaterals are all in the ratio 3 : 1.

Hence the two quadrilaterals are similar.
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Mathematical Olympiad for Girls 2013 Question 3

Question 3

(a) Find all positive integers a and b for which a2 − b2 = 18.
(b) The diagram shows a sequence of points P0, P1, P2,

P3, P4, . . . , which spirals out around the point O.
For any point P in the sequence, the line segment
joining P to the next point is perpendicular to OP
and has length 3. The distance from P0 to O is 29.
What is the next value of n for which the distance
from Pn to O is an integer?

O P029

P1
3

P2
3

P3
3

P4
3

Many candidates did lengthy calculations in both parts of this question. This is an acceptable
method, provided your calculations are without error and you can prove that you have systemati-
cally checked all relevant cases. For example, those who simply checked a few pairs of squares
in part (a) did not score any marks. However, it is possible to argue that a ≥ 5 because a2 > 18,
and also that a ≤ 9 because differences between consecutive squares increase and 102 − 92 > 18.
Hence there are only five possible values of a to check.

If you are trying to check all possible cases, you have to show all your calculations. Markers can
only give marks for what you have written down. In part (b) in particular, several candidates
claimed that they calculated OPn until they found that OP35 was an integer. In such a situation,
markers cannot be sure that all the calculations were correct, unless they are shown explicitly.

Long calculations can be avoided if you use the difference of two squares. Moreover, the method
can be used with much larger numbers. For example, Method 2 can be readily adapted to prove
that there are no integer solutions of the equation a2 − b2 = 174.

In part (b), many candidates found the correct expression for OPn but then didn’t have a good
plan for what to do with it. The difference of two squares from part (a) should have been
a helpful hint. The situation is slightly more complicated, because after factorising we get
(OPn − 29)(OPn + 29) = 9n, and since we don’t know the value of n we cannot write out all
factors of 9n. However, we can think about factors of 9. One possibility is that both the factors
(K − 29) and (K + 29) are multiples of 3. But they differ by 58, which is not a multiple of 3, so
this situation is impossible. It follows that one of these factors is a multiple of 9. (Notice that
they cannot both be multiples of 9.)

The expression for OPn can be found by considering the first few points:

OP2
1 = 292 + 32

OP2
2 = OP2

1 + 32 = 292 + 2 × 32

OP2
3 = OP2

2 + 32 = 292 + 3 × 32

Each length is obtained from the previous one by using Pythagoras, so OP2
n = OP2

n−1 + 9.
Therefore OP2

n = 292 + n × 32. If we were being really careful, then we would use mathematical
induction to prove this assertion. However, this was not required to score full marks.
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Mathematical Olympiad for Girls 2013 Question 3

Solution to part (a) 3 marks

Method 1

Notice that the left-hand side is a difference of two squares and hence can be factorised as
(a − b)(a + b). We are looking for integer solutions, so that a − b and a + b have to be factors of
18. Since a and b are positive, and a2 > b2, it follows that a − b and a + b are both positive, and
a + b > a − b. Hence we need to consider only the following three possibilities:

a − b = 1
and a + b = 18;

or
a − b = 2

and a + b = 9;
or

a − b = 3
and a + b = 6.

Solving each pair of simultaneous equations, we get

a = 19
2 , b = 17

2 or a = 11
2 , b = 7

2 or a = 9
2 , b = 3

2 .

Since none of the solutions are integers, the original equation has no solutions when a and b are
positive integers.

Method 2

Notice that the left-hand side is a difference of two squares and hence can be factorised as
(a − b)(a + b). Now a − b and a + b differ by an even integer, namely 2b, so they are either
both odd or both even. Since their product is 18 they are both even. But then their product is a
multiple of 4, which 18 is not. This is a contradiction, so we deduce that the given equation has
no solutions when a and b are positive integers.

Solution to part (b) 7 marks

We have OP2
1 = 292 + 32 and OP2

n = OP2
n−1 + 32, so OP2

n = 292 + n × 32.

Therefore
OP2

n − 292 = 9n.

Write K for OPn. Then K is a positive integer and, after we factorise the left-hand side, our
equation becomes

(K − 29)(K + 29) = 9n.

Now 58 is not a multiple of 3, so K−29 and K+29 cannot both be multiples of 3. Therefore either
9 divides K − 29 or 9 divides K + 29. We also know that K > 29, because OPn > OP0 = 29.

Suppose that 9 divides K − 29. In this case the least possible value of K is 38, leading to n = 67.

Suppose instead that 9 divides K + 29. In that case the least possible value of K is 34, leading to
n = 35.

So the next value of n for which OPn is an integer is 35.
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Question 4

(a) An ant can move from any square on an 8 × 8 chessboard to an adjacent square. (Two
squares are adjacent if they share a side).
The ant starts in the top left corner and visits each square exactly once. Prove that it is
impossible for the ant to finish in the bottom right corner.
[You may find it helpful to consider the chessboard colouring.]

(b) A ladybird can move one square up, one square to the right, or
one square diagonally down and left, as shown in the diagram,
and cannot leave the board.
Is it possible for the ladybird to start in the bottom left corner
of an 8 × 8 board, visit every square exactly once, and return
to the bottom left corner?

This, along with Question 1, was the most popular question. It was pleasing to see that around
half of the candidates who attempted it produced a successful solution to part (a). You should
remember that every step of your argument needs to be clearly explained. For example, several
candidates lost marks because they didn’t explicitly state that the colours of adjacent squares on
the ant’s path alternate.

Almost all unsuccessful solutions tried to show that the required route is impossible by consider-
ing some specific examples. Although examples are a good way to start, they cannot be used to
prove the general result unless you can ensure that you have tried all possible examples - not
really feasible in this problem!

If you found that looking at the colour of the squares was useful in part (a), you may have tried a
similar strategy in part (b). However, if we just colour the squares black and white, then the up
and right moves are onto a different colour, but the diagonal move is onto the same colour. Since
there are three types of move, it seems sensible to use three colours, and ensure that every move
changes the colour of the square. This can be achieve by colouring the board in diagonal stripes,
as shown in Method 1 below.

Alternatively, if you thought about even and odd squares in part (a), you may have guessed
that the key to part (b) is thinking about multiples of 3. This leads to Method 2, which was the
approach taken by a large majority of successful candidates.

Those who only considered certain special paths in part (a) were equally unsuccessful in part (b).
However, somewhat surprisingly, there is an argument which starts by considering what must
happen in corners, presented in Method 3. The corners cannot be connected without the path
crossing over itself. The crucial insight is that any path that does cross over itself must visit some
square more than once. Note that this would not be the case for a figure that can move along
both diagonals (such as, for example, the chess king), because the crossover could happen on
two diagonal moves. But the ladybird cannot do this, as it only moves along one diagonal.
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Solution to part (a) 3 marks

Consider the colours of the squares on the board.

Each move changes the colour and there are 63 moves, so the start and end squares have different
colours.

But the top left corner and the bottom right corner have the same colour. Hence the bottom right
corner cannot be the final square.
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Solution to part (b) 7 marks

Method 1

Consider a colouring with three colours (red, blue, green), in which all
the squares in a diagonal stripe (running from top left to bottom right)
have the same colour, but squares in adjacent stripes have different
colours (see diagram).

Then the ladybird always moves from green to red, from red to blue
and from blue to green. To return to the starting square (which is green)
she needs to make 64 moves. But the moves which end on a green
square are the moves numbered 3, 6, 9, and so on. Since 64 is not a
multiple of 3, the final move cannot be onto a green square.

Method 2

Suppose that the ladybird makes a tour starting and ending in the bottom left corner.

Let u, r and d be the numbers of each type of move (up, right and diagonal, respectively).
Because she returns to the starting point the number of moves right must equal the number of
moves left. But the only moves left are the diagonal ones, so r = d. Similarly, u = d.

Hence the total number of moves is u + r + d = 3d which cannot equal 64, and thus the required
tour is impossible.

Method 3

The sequence of moves is equivalent to a path connecting the centres of squares. Such a path
cannot cross over itself without passing through a square more than once.

Consider the square with centre L in the top left corner. The only possible moves are K → L →
M , as shown in Figure 1.

K

L M

Q

S

R

Figure 1

Now consider the square with centre R in the bottom right corner. The only possible moves are
Q → R→ S, as shown.

However, once we’ve connected S to K , we will find that Q and M are on opposite sides of the
path between them. Since it can’t go around the ends, this means that the path from Q to M will
necessarily cross over the path from S to K , which is not possible.
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Question 5

(a) Find an integer solution of the equation x3 + 6x − 20 = 0 and prove that the equation
has no other real solutions.

(b) Let x be
3
√√

108 + 10 − 3
√√

108 − 10.
Prove that x is equal to 2.

Although many candidates correctly found an integer solution to the equation in part (a) by
simply trying some small values of x, a considerable number tried to apply the quadratic formula
to this cubic equation. It may be an interesting exercise to investigate for which cubics of the
form x3 + bx + c = 0 the quadratic formula does in fact give the correct solutions.

A useful observation is that any integer solution of this equation has to be a factor of 20. This is
because, if we write the equation in factorised form, the product of the constant terms will be
−20. This restricts the number of integers we need to try.

It is also important to understand the difference between the instructions to “find an integer
solution” and to “solve the equation”. The former simply involves finding a number that works,
so guessing is allowed (as long as you check that the number does work). The latter requires a
procedure that finds all the solutions, and shows that there are no others. Note that in part (a) we
actually end up solving the equation, as we have found the only real solution.

In arguing that there are no solutions other than x = 2, many candidates made a mistake of
considering only integers. Furthermore, many argued that “since x = 1 is too small and x = 3 is
too big, there are no other solutions”. This argument is only valid if the expression x3 + 6x − 20
always increases with x. This is in fact true, and it can be proved either by considering its
derivative, or by noticing that, since both x3 and 6x are increasing functions, then so is their sum.
However, we needed to see the proof to award full marks.

For part (b) you needed to show that x satisfies the equation from part (a). Many candidates
seemed to be intimidated by the complicated expression with cube roots, but most of those who
attempted this part tried to find an expression for x3. Unfortunately, many hastily did this by
cubing both terms separately, essentially trying to use (a − b)3 = a3 − b3, which is of course
not true (except for some special values of a and b — can you find all of them?). The correct
expansion is (a − b)3 = a3 − 3a2b + 3ab3 − b3; you may know that this is called the binomial
expansion.

The terms a2b and ab2 require some thought. For example, using the ‘difference of two squares’
factorisation, you can write(√

108 + 10
)2 (√

108 − 10
)
=

(√
108

2 − 102
) (√

108 + 10
)

= 8
(√

108 + 10
)
.

However, we can make the working neater by using the fact that (a − b)3 = a3 − b3 − 3ab(a − b).

Once you have shown that x satisfies the equation from part (a), you can conclude that x = 2,
but only because you have shown that the equation has only one real solution. You needed to
mention this explicitly to get full marks.
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Solution to part (a) 3 marks

A direct check shows that x = 2 satisfies the equation. Therefore the cubic expression can be
factorised as (x−2)(x2+bx+c). Comparing coefficients gives x3+6x−20 = (x−2)(x2+2x+10).

Hence any other solution of the original equation satisfies x2 + 2x + 10 = 0. But the discriminant
of this quadratic is 22 − 4 × 1 × 10, which is negative, so there are no other real solutions.

Solution to part (b) 7 marks

Let a =
3
√√

108 + 10 and b =
3
√√

108 − 10. Then

a − b = x ,

a3 − b3 =
(√

108 + 10
)
−
(√

108 − 10
)
= 20

and ab = 3
√(√

108 + 10
) (√

108 − 10
)
=

3
√

108 − 102 = 2.

Hence x3 = (a − b)3 = a3 − b3 − 3ab(a − b) = 20 − 6x, which is equivalent to x3 + 6x − 20 = 0.

Since we have proved in part (a) that this equation has only one real solution, it follows that
x = 2.
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